MATH 590: QUIZ 6 SOLUTIONS

Name:

1. Calculate the determinant of $A=\left(\begin{array}{lll}1 & 0 & 2 \\ 0 & 2 & 0 \\ 1 & 0 & 3\end{array}\right)$ in two ways: First by expanding along the third column and second, by using elementary row operations. (5 points)

Solution. Expanding along the third column we have

$$
|A|=2 \cdot\left|\begin{array}{ll}
0 & 2 \\
1 & 0
\end{array}\right|-0 \cdot\left|\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right|+3 \cdot\left|\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right|=2(-2)+0+6=2 .
$$

Using elementary row operations:

$$
A \xrightarrow{-2 \cdot \mathrm{R}_{1}+\mathrm{R}_{3}}\left(\begin{array}{lll}
1 & 0 & 2 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right)=A^{\prime}
$$

Since this operation preserves the determinant and A^{\prime} is upper triangular, $|A|=\left|A^{\prime}\right|=2$.
2. Find an orthonormal basis consisting of eigenvectors for the matrix $A=\left(\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right)$. Be sure to check that your basis is orthonormal. (5 points)

Solution. $\left|\begin{array}{cc}x-1 & 2 \\ 2 & x-1\end{array}\right|=(x-1)^{2}-4=x^{2}-2 x-3=(x-3)(x+1)$, so the eigenvalues of A are $3,-1$. For 3: Nullspace of $\left(\begin{array}{cc}1-3 & 2 \\ 2 & 1-3\end{array}\right)=$ nullspace of $\left(\begin{array}{cc}-2 & 2 \\ 2 & -2\end{array}\right)=$ nullspace of $\left(\begin{array}{cc}1 & -1 \\ 0 & 0\end{array}\right)$, which has basis $v_{1}=\binom{1}{1}$. This is a basis for the eigenspace of 3.
For -1: Nullspace of $\left(\begin{array}{cc}1-(-1) & 2 \\ 2 & 1-(-1)\end{array}\right)=$ nullspace of $\left(\begin{array}{ll}2 & 2 \\ 2 & 2\end{array}\right)=$ nullspace of $\left(\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right)$, which has basis $v_{2}=\binom{-1}{1}$. This is a basis for the eigenspace of -1.
Note that $v_{1} \cdot v_{1}=-1+1=0$, so these vectors are orthogonal, and hence any multiple of these vectors are orthogonal. Note further that v_{1}, v_{2} have lengths $\sqrt{2}$, so if we set $u_{1}:=\frac{1}{\sqrt{2}} \cdot v_{1}$ and $u_{2}:=\frac{1}{\sqrt{2}} \cdot v_{2}$, then u_{1}, u_{2} is an orthonormal basis consisting of eigenvectors for A.

